If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25^x+1=625/5x
We move all terms to the left:
25^x+1-(625/5x)=0
Domain of the equation: 5x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
25^x-(+625/5x)+1=0
We get rid of parentheses
25^x-625/5x+1=0
We multiply all the terms by the denominator
25^x*5x+1*5x-625=0
Wy multiply elements
125x^2+5x-625=0
a = 125; b = 5; c = -625;
Δ = b2-4ac
Δ = 52-4·125·(-625)
Δ = 312525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312525}=\sqrt{225*1389}=\sqrt{225}*\sqrt{1389}=15\sqrt{1389}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15\sqrt{1389}}{2*125}=\frac{-5-15\sqrt{1389}}{250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15\sqrt{1389}}{2*125}=\frac{-5+15\sqrt{1389}}{250} $
| -6c-4=50 | | 5/4(a-8)=2/8 | | -24=5+y | | -7-3d=-3d-5 | | 4x+16+32=180 | | 2x-23+3x-12=180 | | 8=5(u-2)-7u | | 2x+5=5x+65 | | 4(11x+20)=548 | | 3x-5=8x-7-6x | | 18=3x6 | | 3x^2+4x=132 | | -7=a-19 | | 8(x-3)=-2(x+8) | | -3-9g=-9g+2 | | -9+5x+13=-36 | | 3x^24x=132 | | D=(-0.5t+7 | | –6m+–9=87 | | D=(-0.5t+7) | | 0=-16t^{2}+144 | | 2x+3+x+6=45 | | -7w-9.4=11.6 | | 4(3x+20)=12(x+1) | | -(4-4t)t=15 | | 14.75x7.25=12 | | -3-5j=-6j-1 | | v+10/3=10 | | 12=3x6 | | 1/2y+4=4 | | 2(x-5)=3x+2+x | | 100*s^2+10*s+1=0 |